Attachment 1: Climate Change Impacts

Submitted with Comments by:

the States of California, Connecticut, Illinois, Iowa, Maine, Maryland, New Jersey, New York, Oregon, Rhode Island, Vermont, and Washington, the Commonwealth of Massachusetts, and the City of Chicago on

Our States and Cities have already begun to experience adverse impacts from climate change. Based on the overwhelming scientific evidence, those harms are likely to increase in number and severity unless aggressive steps are taken to reduce emissions of carbon dioxide and other greenhouse gases. Summarized below are some of those most significant threats being faced by our States and Cities.

California

Climate change’s adverse effects have become impossible to ignore in California. The state weathered a historic five-year drought only to face record-setting fire seasons and a variety of other unprecedented phenomena increasingly harming the health and prosperity of Californians from all walks of life and all parts of the state, as described in more detail in a recent report of the California Air Resources Board.¹

Drought conditions beginning in 2012 left reservoirs across the state at record low levels, often no more than a quarter of their capacity. The Sierra snowpack—critical to California’s water supply, tourism industry, and hydroelectric power—was the smallest in at least 500 years.² The resulting cutbacks threatened the livelihoods of farmers and fishermen alike. In the Central Valley, the drought cost California agriculture about $2.7 billion and more than 20,000 jobs in 2015 alone.³ In addition, the drought led to land subsidence, due to reduced precipitation and increased groundwater pumping, and the death of 129 million trees throughout the state.⁴

Even prior to the drought, the U.S. Forest Service had found that California was at risk of losing 12 percent—over 5.7 million acres—of the total area of forests and woodlands in the state due to insects and disease thriving in a hotter climate.⁵ Several pine species are projected to lose around half of their basal area.⁶ And a majority of the ponderosa pine in the foothills of the central and southern Sierra Nevada Mountains has already died, killed by the western pine beetle and other bark beetles.⁷ The increasing threat from these insects is driven in large part by warmer

³ California’s 2017 Climate Change Scoping Plan Update, supra, at 7.
⁵ California’s 2017 Climate Change Scoping Plan Update, supra, at 7.
⁶ Id.
⁷ Id.
summer temperatures attributable to climate change. The very high levels of tree mortality led Governor Brown to issue an Emergency Proclamation on October 30, 2015, directing state agencies to identify and take action to reduce wildfire risk through the removal and use of the dead trees.

Notwithstanding the Governor’s Proclamation, the hotter, drier weather and millions of dead trees have increasingly accelerated the damage from wildfires. The 2017 season—the worst on record—killed dozens of people, destroyed thousands of homes, forced hundreds of thousands to evacuate, and burned more than half a million acres. Prior to 2017, the worst year on record was 2015. In between, California faced the most expensive wildfire in U.S. history, the Soberanes fire, which burned for three months in 2016 and cost more than $250 million to put out. Climate change is expected to make longer and more severe wildfire seasons “the new normal” for California. Besides the immediate threats they pose to life and property, wildfires significantly impair both air quality (via smoke and ash that can hospitalize residents) and water quality (via the erosion of hillsides stripped of their vegetation).

Off the coast, rising ocean temperatures and ocean acidification have spurred toxic algal blooms, resulting in high levels of the neurotoxin domoic acid. This toxin has hit California’s economically valuable Dungeness crab fishery particularly hard. From 2015 to 2017, domoic acid contamination forced California to close the fishery for parts of the season in order to protect consumers from serious health risks, with the 2015-16 season declared a federal disaster. Other fisheries have suffered a similar fate. The Dungeness crab fishery is expected to decline significantly in the future as acidification increases. In addition, high levels of domoic

acid are poisoning marine mammals, and have been linked to reproductive failure (including high rates of miscarriage and premature birth) among California sea lions.16

California’s many miles of coastline, particularly coastal bluffs, make it uniquely vulnerable to sea-level rise and more intense storms. Even if storms do not become more intense or frequent, sea-level rise itself will magnify the adverse impact of any storm surge and high waves on the California coast. Some observational studies report that the largest waves are already getting higher and winds are getting stronger.17 California is likely to face greater than average sea-level rise, because of gravitational forces and the rotation of the Earth. Recent projections indicate that if no significant greenhouse gas mitigation efforts are taken, the San Francisco Bay Area may experience sea level rise between 1.6 to 3.4 feet, and in an extreme scenario involving the rapid loss of the Antarctic ice sheet, sea levels along California’s coastline could rise up to 10 feet by 2100.18

In addition to damage to the physical environment, increased temperatures California will experience due to climate change will put the health of state residents at risk. Increased hospitalizations for multiple diseases, including cardiovascular disease, ischemic heart disease, ischemic stroke, respiratory disease, pneumonia, dehydration, heat stroke, diabetes, and acute renal failure are associated with increases in same-day temperature.19 Such temperature increases have also been found to be associated with increased risk of preterm delivery20 and stillbirths.21 Recent California studies suggest increased mortality risk not only with extreme heat, but also with increasing ambient temperature.22

16 T. Goldstein et al., The Role of Domoic Acid in Abortion and Premature Parturition of California Sea Lions (Zalophus californianus) on San Miguel Island, California, JOURNAL OF WILDLIFE DISEASES. 45(1): 91-108 (2009).

California 2018 Supplement

In 2018, the State of California produced two substantial reports on the impacts of climate change in California, which incorporate the latest scientific research on the impacts of climate change in California.

The first report, published May 2018 titled “Indicators of Climate Change in California” examines thirty-six separate indicators and reflects the contributions of dozens of scientists from California’s universities, and state agencies, as well as the U.S. National Oceanic and Atmospheric Administration and the U.S. Department of Energy’s Lawrence Berkeley National Laboratory.23 A copy of the full “Indicators” report is included in the attachments to the States’ comments.

The second report, published August 2018 titled “California’s Fourth Climate Assessment” includes thirty-three papers from State-funded research, and eleven papers from externally funded researchers, as well as regional summaries and a statewide summary of climate vulnerabilities, and a key findings paper.24 A copy of selected research papers and the regional and statewide summaries and key findings reports are included in the attachments to the States’ comments.

Key findings from those reports and other sources include the following:

Temperature Changes and Air Quality Impacts

“Since 1895, annual average air temperatures have increased throughout the state, with temperatures rising at a faster rate beginning in the 1980s. The last four years were notably warm, with 2014 being the warmest on record, followed by 2015, 2017, and 2016. Temperatures at night have increased more than during the day: minimum temperatures (which generally occur at night) increased at a rate of 2.3 degrees Fahrenheit (°F) per century, compared to 1.3°F per century for maximum temperatures.”25

“Extremely hot days and nights — that is, when temperatures are at or above the highest 2 percent of maximum and minimum daily temperatures, respectively — have become more frequent since 1950. Both extreme heat days and nights have increased at a faster rate in the past 30 years. Heat waves, defined as five or more consecutive extreme heat days or nights,

25 California Climate Indicators 2018 at S-4.
are also increasing, especially at night. Nighttime heat waves, which were infrequent until the mid-1970s, have increased markedly over the past 40 years.”

In addition, rising temperatures “could lead to increases in ground-level ozone and reduce the effectiveness of emission reductions taken to achieve air quality standards…”

“A recent detailed analysis suggests that adoption of low-carbon energy in California to reduce GHG emissions 80 percent below 1990 levels would lead to a 55 percent reduction in air pollution mortality rates relative to 2010 levels (Zapata et al., 2018). These public health improvements have a value of $11-20 billion/year in California (Zapata et al., 2018).”

Human Health Impacts

Climate change poses direct and indirect risks to public health, as people will experience earlier death and worsening illnesses.

“Nineteen heat-related events occurred from 1999 to 2009 that had significant impacts on human health, resulting in about 11,000 excess hospitalizations. However, the National Weather Service issued Heat Advisories for only six of the events. Heat-Health Events (HHEs), which better predict risk to populations vulnerable to heat, will worsen drastically throughout the state: by midcentury, the Central Valley is projected to experience average Heat-Health Events that are two weeks longer, and HHEs could occur four to ten times more often in the Northern Sierra region.”

“The 2006 heat wave killed over 600 people, resulted in 16,000 emergency department visits, and led to nearly $5.4 billion in damages. The human cost of these events is already immense, but research suggests that mortality risk for those 65 or older could increase ten-fold by the 2090s because of climate change.”

Environmental Justice Impacts

“Multiple studies of vulnerability and climate impacts indicate that existing inequities can be exacerbated by climate change. For example, the consequences of climate-related water impacts are particularly acute for communities already dealing with a legacy of inequalities. A recent study on drought and equity in California found that low-income households, people of color, and communities already burdened with environmental pollution suffered the most severe impacts caused by water supply shortages and rising cost of water (Feinstein et al., 2017). In a report prepared as part of the Fourth Assessment, Ekstrom et al. (2018) found

26 Id. at S-5.

28 Id. at 71.

29 Id. at 10.

30 Id.
that while all water districts faced similar challenges during the drought, small water districts (defined as those serving less than 10,000 people or less than approximately 3,300 connections) were less likely to have the resources and capacity to overcome those challenges. These districts are most likely to serve small, rural communities in California. Furthermore, for marginalized populations in rural areas of the state, agricultural actions in response to the drought, including increases in groundwater pumping and crop choices, are increasing and reshaping their vulnerability to drought and water shortage (Greene, 2018).31

“Inequities not only exist in varying exposures to climate risk, but also in the availability and implementation of potential adaptation or resilience solutions. Recent research analyzed differences in tree canopy, an important tool for adapting to the effects of extreme heat, at the census block group scale in coastal Los Angeles and found disparities between canopy in high-income and low-income neighborhoods (Locke et al., 2017). This disparity can have implications for communities because of the benefits tree canopy provides in reducing the negative effects of extreme heat events. A study prepared for the Fourth Assessment provides one of the first estimates of these benefits in one location (Taha et al., 2018).”32

Tribal and Indigenous Communities Impacts

“Tribes and Indigenous communities in California face unique challenges under a changing climate. Tribes maintain cultural lifeways and rely on traditional resources (e.g., salmon fisheries) for both social and economic purposes. However, tribes are no longer mobile across the landscape. For many tribes in California, seasonal movement and camps were a part of living with the environment. Today these nomadic options are not available or are limited. This is the result of Euro-American and U.S. policy and actions and underpins several climate vulnerabilities. Tribes with reservations/Rancherias/allotments are vulnerable to climate change in a specific way: tribal lands are essentially locked into fixed geographic locations and land status. Only relatively few tribal members are still able to engage in their cultural traditions as livelihoods.”33

Precipitation and Water Supply Impacts

“California has the highest variability of year-to-year precipitation in the contiguous United States.”34 By 2050, “the average water supply from snowpack is projected to decline by 2/3 from historical levels.”35

“Statewide precipitation has become increasingly variable from year to year. In seven of the last ten years, statewide precipitation has been below the statewide average (22.9

31 California Statewide Summary at 36-37.
32 Id. at 37.
33 Id. at 10.
34 Id. at 24.
Inches). In fact, California’s driest consecutive four-year period occurred from 2012 to 2015. In recent years, the fraction of precipitation that falls as rain (rather than snow) over the watersheds that provide most of California’s water supply has been increasing — another indication of warming temperatures.36

“Spring snowpack, aggregated over the Sierra Nevada and other mountain catchments in central and northern California, declines substantially under modeled climate changes (Figure 6). The mean snow water equivalent (SWE) declines to less than two-thirds of its historical average by 2050, averaged over several model projections under both RCP 4.5 and 8.5 scenarios. By 2100, SWE declines to less than half the historical median under RCP 4.5, and less than one-third under RCP 8.5. Importantly, the decline in spring snowpack occurs even if the amount of precipitation remains relatively stable over the central and northern California region; the snow loss is the result of a progressively warmer climate. Furthermore, while the models indicate that strong year-to-year variation will continue to occur, the likelihood of attaining spring snowpack that reaches or exceeds historical average is projected to diminish markedly (Pierce et al., 2018) (Figure 6).”37

Agriculture Impacts

“Agricultural production could face climate-related water shortages of up to 16% in certain regions. Regardless of whether California receives more or less annual precipitation in the future, the state will be dryer because hotter conditions will increase the loss of soil moisture.”38

“Winter chill has been declining in certain areas of the Central Valley. This is the period of cold temperatures above freezing but below a threshold temperature needed by fruit and nut trees to become and remain dormant, bloom, and subsequently bear fruit. When tracked using “chill hours,” a metric used since the 1940s, more than half the sites studied showed declining trends; with the more recently developed “chill portions” metric, fewer sites showed declines.”39

“It is evident from recent droughts that agricultural production will be challenged by water shortages, higher temperatures, changing atmospheric conditions, and conversion of agricultural land to developed uses (Medellin-Azuara et al., 2018; Wilson et al., 2017). Agriculture is the economic foundation for many of California’s communities, particularly rural communities where other employment opportunities are limited. Roughly 6.7 percent of jobs statewide are generated by farms and farm processing, and in the Central Valley the figure is much higher (22 percent) (UC Agricultural Issues Center, 2012). This means that climate change impacts to agriculture, and even nuanced impacts such as shifting cropping patterns, may create hardships in the rural communities where agriculture is foundational.

36 California Climate Indicators at S-5.
37 California Statewide Summary at 27.
38 Id.
39 California Climate Indicators at S-5.
Different crops have different labor demands (Medellín-Azuara et al., 2016), and shifting crop patterns may result in changes in employment throughout the agricultural sector (Greene, 2018; Villarejo, 1996). A Fourth Assessment study found that in the 2012-2016 drought, to access higher market prices and compensate for the higher cost of water, many farms switched to higher value crops, for which cultivation and harvesting could be largely automated—leaving agricultural workers with employment shortages beyond the drought (Greene, 2018). A report by the University of California found that in 2016, the drought resulted in a $603 million loss to the economy and the loss of 4,700 jobs due to the impacts on agriculture (Medellín-Azuara et al., 2016).”

Forest Impacts

A new paper published on October 18, 2018, estimates that “human-caused climate change caused over half of the documented increase in fuel aridity since the 1970s and doubled the cumulative forest fire area since 1984,” contributing an additional 4.2 million ha [hectares] of forest fire. As the paper notes, “[i]ncreased forest fire activity across the western United States in recent decades has contributed to widespread forest mortality, carbon emissions, periods of degraded air quality and substantial fire suppression expenditures.”

“A changing climate combined with anthropogenic factors has already contributed to more frequent and severe forest wildfires in the western U.S. as a whole (Abatzoglou & Williams, 2016; Mann et al., 2016; Westerling, 2016).”

“One Fourth Assessment model suggests large wildfires (greater than 25,000 acres) could become 50% more frequent by the end of century if emissions are not reduced. The model produces more years with extremely high areas burned, even compared to the historically destructive wildfires of 2017 and 2018.”

“By the end of the century, California could experience wildfires that burn up to a maximum of 178% more acres per year than current averages.” Increased wildfire smoke will also lead to more respiratory illness.

In addition, the changes in climate make trees more vulnerable to pest infestations.

40 California Statewide Summary at 59.
42 Id.
43 California Statewide Summary at 28.
44 California Key Findings at 6.
45 Id.
46 Id. at 8.
“Moisture stress in conifer forests enhances tree vulnerability to insect infestation, particularly by bark beetles (Anderegg et al., 2015; Bentz et al., 2010; Berryman, 1976; Gaylord et al., 2013; Hart et al., 2014; Kolb et al., 2016; Raffa et al., 2008). Between 2010 and 2017, an estimated 129 million trees have died (Young et al., 2017). Bark beetle outbreaks may be promoted by warming for multiple reasons (Bentz et al., 2010). Warming may promote successful beetle overwintering (Weed et al., 2015) and may also promote earlier timing of adult emergence and flight in spring/early summer, which may enable beetles to increase the frequency at which they can mate, lay eggs, and emerge as adults (Bentz et al., 2016).”

Drought and Land Subsidence Impacts

“The recent 2012-2016 drought was exacerbated by unusual warmth (Williams, Seager, et al., 2015), and disproportionately low Sierra Nevada snowpack levels (Dettinger & Anderson, 2015). This drought has been described as a harbinger of projected dry spells in future decades, whose impacts will likely be worsened by increased heat (Mann & Gleick, 2015). A very wet winter in 2016-2017 followed this drought, a further indication of potential continued climate volatility in the future (Berg & Hall, 2015; Polade, et al., 2017; Swain et al., 2018).”

“Warming air temperatures throughout the 21st century will increase moisture loss from soils, which will lead to drier seasonal conditions even if precipitation increases (Thorne et al., 2015). Warming air temperatures also amplify dryness caused by decreases in precipitation (Ault et al., 2016; Cayan et al., 2010; Diffenbaugh et al., 2015). These changes affect both seasonal dryness and drought events. Climate projections from the previous and present generation of GCMs (e.g. Pierce et al., 2014; Swain et al., 2018) show that seasonal summer dryness in California may become prolonged due to earlier spring soil drying that lasts longer into the fall and winter rainy season. The extreme warmth during the drought years of 2014 and 2015 intensified some aspects of the 2012-2016 drought (Griffin & Anchukaitis, 2014; Mao et al., 2015; Stephenson et al., 2018; Williams, Seager, et al., 2015) and may be analogous for future drought events (Diffenbaugh et al., 2015; Mann & Gleick, 2015; Williams, Seager, et al., 2015).”

In addition, a “secondary, but large, effect of droughts is the increased extraction of groundwater from aquifers in the Central Valley, primarily for agricultural uses. The pumping can lead to subsidence of ground levels, which around the San Joaquin-Sacramento Delta has been measured at over three-quarters of an inch per year.”

“This subsidence compounds the risk that sea-level rise and storms could cause overtopping or failure of the levees, exposing natural gas pipelines and other infrastructure to damage or structural failure. At this rate of subsidence, the levees may fail to meet the federal levee

47 California Statewide Summary at 64.
48 Id. at 13.
49 Id. at 26.
50 Id. at 14.
height standard (1.5 ft. freeboard above 100-year flood level) between 2050-2080, depending on the rate of sea-level rise.”51

Sea-Level Rise, Coastal Erosion and Infrastructure Impacts

“Along the California coast, sea levels have generally risen. Since 1900, mean sea level has increased by about 180 millimeters (7 inches) at San Francisco and by about 150 millimeters (6 inches) since 1924 at La Jolla. In contrast, sea level at Crescent City has declined by about 70 millimeters (3 inches) since 1933 due to an uplift of the land surface from the movement of the Earth’s plates. Sea level rise threatens existing or planned infrastructure, development, and ecosystems along California’s coast.”52

“If emissions continue at current rates, Fourth Assessment model results indicate that total sea-level rise by 2100 is expected to be 54 inches, almost twice the rise that would occur if greenhouse gas emissions are lowered to reduce risk.”53

“31 to 67% of Southern California beaches may completely erode by 2100 without large-scale human interventions.”54

“Flooding from sea-level rise and coastal wave events leads to bluff, cliff, and beach erosion, which could affect large geographic areas (hundreds of kilometers). In research conducted for the Fourth Assessment, Erikson et al. (2018) found that if a 100-year storm occurs under a future with 2m (6.6 feet) of SLR, resultant flooding in Southern California could affect 250,000 people and lead to damages of $50 billion worth of property and $39 billion worth of buildings.”55

In addition, airports in major urban areas will be susceptible to major flooding from sea-level rise and storm surge by 2040-2080, and 370 miles of coastal highway will be susceptible to coastal flooding by 2100.56

Ocean Acidity and Health Impacts

“Increasing evidence shows that climate change is degrading California’s coastal and marine environment. In recent years, several unusual events have occurred along the California coast and ocean, including a historic marine heat wave, record harmful algal bloom, fishery closures, and a significant loss of northern kelp forests.”57

51 California Statewide Summary at 12.
52 California Climate Indicators at S-7.
53 California Key Findings, at 6.
54 Id. at 15.
55 California Statewide Summary at 31.
56 Id. at 54-55.
57 Id. at 12.
In addition:

“[o]cean acidification … is predicted to occur especially rapidly along the West Coast (e.g., Gruber et al., 2012). Ocean acidification presents a clear threat to coastal communities through its significant impacts on commercial fisheries and farmed shellfish (Ekstrom et al., 2015) as well as to ocean ecosystems on a broader scale. Ocean acidification affects many shell-forming species, including oysters, mussels, abalone, crabs, and the microscopic plankton that form the base of the oceanic food chain (Kroeker et al., 2013; Kroeker et al., 2010). Significant changes in behavior and physiology of fish and invertebrates due to rising CO2 and increased acidity have already been documented (e.g., Hamilton et al., 2017; Jellison et al., 2017; Kroeker et al., 2013; Munday et al., 2009). Species vulnerable to ocean acidification account for approximately half of total fisheries revenue on the West Coast (Marshall et al., 2017).” 58

Connecticut

In April 2010, the Governor’s Steering Committee on Climate Change produced a report that predicted the impact of climate change on Connecticut’s agriculture, infrastructure, natural resources and public health.59 In general the report concluded that the impact of climate change on these four areas would be largely negative; Connecticut crops such as maple syrup, apple and pear production, and shellfish will suffer; infrastructure to control coastal flooding and storm water could be substantially damaged; rare habitats and critical species face elimination; and Connecticut’s public health, particularly of the most vulnerable communities, is threatened by a decrease in air quality, extreme heat and the favorable conditions for increased disease.

The Connecticut Institute for Resilience and Climate Adaptation or CIRCA, an institute housed at the University of Connecticut, has projected a rise in sea level of approximately twenty inches by 2050. In response to this latest analysis, Governor Malloy signed Public Act 18-82, An Act Concerning Climate Change Planning and Resiliency, into law which requires state and federally funded projects to plan for a scenario of 50 centimeters of sea level rise by 2050, ensuring the success of future projects undertaken in the state, the prudence of state investments, and the safety of those residing on or near the shoreline. In addition to preparations for the imminent rise in sea level, Public Act 18-82 sets an interim target of a 45% reduction in greenhouse gas emissions from a 2001 baseline by 2030, ensuring Connecticut remains on a path to achieve an 80% reduction in emissions by 2050 as mandated under the state’s Global Warming Solutions Act.

Observed Change

Connecticut has already begun to experience the severe consequences of climate change induced by unchecked, increasing GHG emissions. Between 1895 and 2011, temperatures in the

58 Id. at 66-67.

Connecticut increased by almost 2°F (0.16°F per decade), and precipitation increased by approximately five inches, or more than 10% (0.4 inches per decade).60 Between 1980 and 2018, average annual temperature in Connecticut has risen by over 2°F. Over the same period, winter temperatures have warmed by 3°F.

The Northeast has experienced a greater recent increase in extreme precipitation than any other region in the United States; between 1958 and 2010, Connecticut saw more than a 70% increase in the amount of precipitation falling in very heavy events. In 2011 Hurricane Irene caused power outages affecting 754,000 customers and over $1 billion in damage, and in 2012 Hurricane Sandy caused power outages affecting more than 600,000 customers and over $360 million in damage. The latter forced thousands of Connecticut residents evacuate, saw thousands apply for FEMA assistance, damaged roads and infrastructure, and took nine days for utilities to restore power.61 Many of Connecticut’s coastal communities and assets remain at risk to more frequent future storm events exacerbated by climate change.

\textbf{Projections}

Connecticut is highly vulnerable to changes in mean and extreme climate due to regional characteristics like a dense population and aging infrastructure. In conservative estimates, climate projections for Connecticut robustly indicate that annual mean temperature will rise by 5-10°F by the end of the 21st Century.

Mean annual precipitation is also likely to increase, particularly in winter and spring seasons, contributing to increased flooding risk through the region. Additionally, weather and climate extremes are projected to be more frequent and intense which will impact both natural and socioeconomic sectors. As temperatures increase along the coast, humidity will also rise, resulting in amplified heat stress during summer months. For inland areas, drought events will become more severe and longer-lived, causing increased competition for limited water resources, agricultural crop damage, ecosystem stress, and risk of wildfire. Communities in Connecticut should expect that coastal flooding intensity and frequency to increase in coming decades due to accelerating trends in coastal erosion, extreme precipitation, and storms.

\textbf{Sea Level}

Direct and remotely sensed measurements of sea level have shown that the annual mean level of the ocean surface is rising. In the Northeast, coastal flooding has increased due to approximate one foot rise in sea level since 1900. This rate of sea level rise exceeds the global

61 Burgeson, John, \textit{Rising Above the Tide: 5 Years Since Sandy}, CTPost, (Oct. 28, 2017), \url{https://www.ctpost.com/local/article/Rising-above-the-tide-5-years-since-Sandy-12313727.php}
average of approximately eight inches, due primarily to land subsidence and thermal expansion (of ocean water) along the Northeastern coast. In moderately conservative estimates, sea level rise along the Connecticut coast is projected to be ~0.76 ft (0.23 meters) higher than 2000 levels by 2050. However, the upper range of projected sea level rise by 2050 is over 1.5 feet. This will strongly impact the many coastal communities and businesses in Connecticut.

Illinois

Climate change is affecting Illinois in a number of ways—both by fundamentally altering the state’s environment in ways never seen before and by intensifying well-recognized weather hazards. The fundamental changes can be seen in Illinois’ farming industry and in the state’s greatest environmental asset, Lake Michigan.

The farming sector is particularly vulnerable to extreme precipitation caused by climate change. 2012 was Illinois’ third driest summer on record. The very next year, heavy rainfall caused flooding in parts of the state that, together with the wettest January-to-June period ever recorded in Illinois, forced farmers to delay planting and lose revenue. Heat waves during the crop pollination season may reduce future yield: hotter weather and altered rain patterns could cause 15% loss in the next 5 to 25 years and up to a 73% average loss by the end of the next century. Milder winters will lead to more weeds, insects, and diseases surviving throughout winter, also hurting yield and quality.

Climate disruption also contributes to whipsawing water levels on Lake Michigan. In January 2013, the lake fell to an all-time low water level. In 2015, it climbed to its highest level since 1998, the second-largest recorded gain over a 24-month span. Rapidly swinging water levels hurt the commercial shipping industry, recreational boaters, wildlife, and beach-goers. For example, for every inch the lake loses, a freighter must forgo 270 tons of cargo. High water erodes beaches and damages property.

64 Id.

65 Id.

67 Id.
Climate change has already turned up the volume on well-recognized catastrophic extreme weather events, causing stronger storms, increased precipitation, and higher average temperatures. In recent years, the state has been struck by deadly tornadoes in November 2013 and the 2014 polar vortex.\(^{68}\)

Illinois also suffers from frequent flooding, and climate change has and will cause the frequency and strength of these floods to increase. For instance, flooding caused by increased precipitation causes dramatic damage to the lives and property of Illinois residents; this toll will increase as climate change intensifies. For example, in 2009, a freight train carrying ethanol derailed in Cherry Valley, Illinois due to washout of train tracks following heavy rains.\(^{69}\) Fourteen of the tanker cars carrying ethanol caught fire, killing a woman in her car waiting for the train to pass. Seven other people were injured and about 600 nearby homes were evacuated.\(^{70}\) A few days later, a 54-mile-long fish kill occurred on the Rock River when ethanol that was not consumed by the fire flowed downstream, killing over 70,000 fish.\(^{71}\)

CHERRY VALLEY TRAIN DERAILMENT

Image from Rockford Register Star

In another instance, a major flood struck Jo Daviess County in northwestern Illinois in 2011 after 15 inches of rain fell during a 12-hour time period. The flood waters caused extensive damage to roads and train tracks and at least one fatality.72 Illinois has also struggled with urban flooding caused by heavy rains falling on impervious surfaces.73

\textit{2011 JO DAVIESS COUNTY FLOOD}

\textit{Images from Rockford Register Star}

Furthermore, rising average temperatures injures Illinois residents. Hotter weather will inevitably harm public health and lead to heat-related deaths. For instance, over 700 Illinois residents died due to the historically intense heat wave in July 1995.74 Intensified drought conditions strengthen these impacts—the inverse of heavy precipitation.

Though catastrophes such as these have occurred from time to time throughout Illinois’ history, climate change will cause them to happen more frequently and with more ferocity than ever before, at the cost of the lives and health of Illinois residents.

\textbf{Iowa}

Climate change increases Iowa’s propensity for flooding and droughts, creates challenges for the state’s agricultural economy, and poses risks to public health. While already experiencing

some of climate change’s adverse effects, Iowa will likely only become more susceptible to climate change-related harms as average temperatures continue to increase.

Climate change influences the frequency and duration of precipitation events, and Iowa is feeling the effects. Climate change influences the frequency and duration of precipitation events, and Iowa is feeling the effects. Over the past half century, Iowa has seen an increase in annual precipitation and a greater frequency of extreme rain events. The latest science suggests that the increase in precipitation will continue, while Iowa will also continue experiencing more significant drought in some areas. The increased rain events are due to higher surface evaporation from a warmer world, while dry spells are due to reduced evaporation stemming from a lack of moisture. In other words, changes in Iowa’s climate will likely continue to make wet seasons wetter and dry seasons dryer.

Extreme rain events have caused significant flooding throughout Iowa, and with Iowa’s over 70 interior rivers, the flooding has adversely affected much of Iowa’s population. Since 1990, Iowa has had over 30 presidentially declared flood-related disaster declarations. The flooding has caused an estimated 13.5 billion dollars worth of property-related damage. In 2016, a presidential declaration identified 19 counties affected by severe flooding, many of which were also hit hard by flooding in 2008. In 2018 alone, 30 counties have already been identified in presidential disaster declarations due to severe storms and flooding.

Heavy rainfall and melting snow have also led to significant flooding in Iowa’s bordering Mississippi and Missouri Rivers. In 2011, the high level of the Mississippi River forced navigation closures and caused billions of dollars in damage downstream. That same year,

78 Chia Chou et al., Increase in the Range Between Wet and Dry Season Precipitation, 6 NATURE GEOSCIENCE, 263, 263–67 (2013).

82 Iowa Disaster History, IOWA HOMELAND SECURITY & EMERGENCY MGMT., supra.

83 Id.

flooding along the Missouri River led to hundreds of millions of dollars in damages and also closed the river to navigation. Iowa’s Sioux City and Council Bluffs were two of the cities affected most by the flood, experiencing extensive property damage and crop loss.

Iowa also has felt the impacts of climate change in its dry seasons. As recently as 2017, drought conditions throughout the state left locations with rainfall at less than 50 percent of normal precipitation. In 2012, a prolonged drought cost the region more than $250 million when the scarcity of water led to narrowed navigation channels, forced lock closures, and dozens of barges running aground on the Mississippi River.

Iowa has warmed between one-half to one degree in the last century, and a continued increase in temperature may lead to more challenges for Iowa’s agricultural economy. Iowa leads the nation in egg production, harvested acreage of principal crops, corn export value, corn for grain production, and hog and pig inventory. Climate change may put additional heat stress on farmers’ crops and livestock, posing a greater risk of substantial decreases in crop yields and livestock productivity. Under some estimates, absent significant adaptation by Iowa farmers, the state could face declines in its corn crop of 18-77 percent—a significant blow to a corn industry currently worth nearly $10 billion. Crop production can be inhibited by changing rain patterns such as wetter springs—which delay planting and increase flood risk—and less rain

85 DEP’T OF HOMEER SEC., MISSOURI RIVER FLOOD COORDINATION TASK FORCE REPORT, 12, 39 (2011).
87 DEP’T OF HOMEER SEC., MISSOURI RIVER FLOOD COORDINATION TASK FORCE REPORT, supra, at 39.
90 What Climate Change Means for Iowa, supra, at 1.
Climate change also puts Iowans’ public health at risk. The higher temperatures can increase air pollutants such as ozone and fine particulates, which increase the risk of heart and lung-related illness. Allergic diseases and asthma are expected to become more widespread and more severe due to exposure to new plants and increases in pollen counts. The warmer, wetter climate can even increase the risk of infectious diseases transmitted by insects that will be better able to live in a more humid and warm Iowa environment. Iowans’ health risks will only likely increase as average temperatures continue to increase.

Maine

Maine is experiencing significant, negative effects of climate change through rising sea levels, ocean acidification, and invasive species that are expanding their range northward as the environment warms. By way of example, The Gulf of Maine is warming faster than 99% of the world’s ocean waters. These warmer waters have brought with them an invasion of non-native green crabs that are devastating soft-shell clam flats throughout southern and mid-coast Maine. At the same time, ocean waters globally have become approximately 30% more acidic over the last century, and features of the Gulf of Maine, including its extensive freshwater inputs, make it particularly vulnerable to acidification. The increasing acidity inhibits shell formation in all shellfish, including lobsters, which just five years ago were the basis of an industry estimated to be worth $1.7 billion in Maine. These symptoms of climate change threaten both the health of the State’s marine ecosystem and a coastal economy that depends on it.

94 What Climate Change Means for Iowa, supra, at 1.
96 What Climate Change Means for Iowa, supra, at 2.
98 Id.
100 Id.
Similar changes are occurring in Maine’s interior. Iconic species that drive the State’s tourist economy are suffering from the effects of global warming. Longer, hotter summers and more frequent droughts are shrinking brook trout habitat and undermining efforts to restore sea-run salmon in Maine’s downeast rivers. A plague of winter ticks brought on by decreased snowpack has taken a significant toll on Maine’s moose population. Milder winters have also hurt the ski industry, while shorter and earlier springs are interfering with maple sugaring operations.

Maryland

With more than 3,000 miles of coastline, Maryland’s coast is particularly vulnerable to rising sea levels and the more extreme weather events associated with climate change: shoreline erosion, coastal flooding, storm surges, inundation, and saltwater intrusion into groundwater supplies.

In 2007, the Maryland Commission on Climate Change (MCCC) was established by Executive Order 01.01.2007.07 and was charged with evaluating and recommending state goals to reduce Maryland’s greenhouse gas emissions to 1990 levels by 2020 and to reduce those emissions to 80 percent of their 2006 levels by 2050. The MCCC was also tasked with developing a plan of action that addressed the causes and impacts of climate change and included firm benchmarks and timetables for policy implementation. As a result of the work of more than 100 stakeholders and subject matter experts, the MCCC produced a climate action plan. That plan was the impetus for Maryland’s Greenhouse Gas Emissions Reduction Act of 2009, an enhanced version of which became law in 2016.

As emphasized by the MCCC’s Science and Technical Working Group, estimates show that “Maryland is projected to experience between 2.1 and 5.7 feet of sea level rise over the next

century. In fact, sea level could be as much as 2.1 feet higher in 2050 along Maryland’s shorelines than it was in 2000.”

Sea level rise could inundate some facilities of the Port of Baltimore, placing one of the most important ports along the East Coast at risk. In 2016, for instance, the Port generated nearly $3 billion in wages and salaries, supported over 13,000 direct jobs, and moved 31.8 million tons of international cargo.

The state’s tourism sector is also likely to feel the impact of climate change. In 2015, for instance, tourism resulted in $2.3 billion in tax revenue, which directly supported more than 140,000 jobs with a payroll of $5.7 billion. Rising sea levels, flooding, and heightened storm surges will place further strain on Maryland’s low-lying urban and coastal lands, making tourism less feasible and increasing the costs of maintaining bridges, roads, boardwalks, and other tourism infrastructure. Beaches, moreover, “will move inland at a rate 50 to 100 times faster than the rate of sea level elevation” and “the cost of replenishing the coastline after a 20-inch rise in sea level would be between $35 million and $200 million.”

Further, skiing and other snow sports “are at obvious risk from rising temperatures, with lower-elevation resorts facing progressively less reliable snowfalls and shorter seasons.” Wisp Mountain Park, for example, is a popular skiing destination in Western Maryland, and the only ski resort in the State. Even in late December of 2015, only one of the resort’s 35 trails was open because of the difficulty keeping snow on the ground in above-freezing temperatures.

Climate change may also adversely impact Maryland’s agricultural industry, which employs some 350,000 people. In 2015, the market value of agricultural products produced in Maryland was $2.2 billion, with net farm income exceeding $500 million. By 2050, absent

113 MCCC 2015 Annual Report 14, supra.

114 MCCC 2017 Annual Report 16, supra.

117 Id. at 13.

118 Id. at 14.
additional action, rising summer temperatures could result in nearly $150 million in median annual losses for corn, soy, and wheat.119 Increased flooding could adversely affect the stability, salinity, drainage, and nutrient balance of soil in low-lying areas, causing declines in crop production and making farming less viable. Rising seas could lead salt water to flow into aquifers used for irrigation. Livestock could suffer from higher temperatures, too, and would need more access to cooler areas. By causing soil erosion and nutrient runoff, moreover, increased rainfall could adversely affect water quality, including in the Chesapeake Bay.120

Climate change will have significant effects on forests, which contribute some $2.2 billion to the Maryland economy, as well as $24 billion in ecological services.121 Climate change will exacerbate species’ existing stressors and alter their distribution, with some species likely to leave or decline and others likely to arrive or increase. Further, the services that forests provide—such as temperature regulation and water filtration—may be affected by climate change.122

Climate change also threatens the Chesapeake Bay, the largest estuary in the United States. Development and pollution have made the Bay and its ecosystems more vulnerable to stressors, including those resulting from climate change. Already, the Bay has warmed by three degrees Fahrenheit. Further temperature increases could change the composition of commercial fisheries and deprive aquatic life of the oxygen needed to survive. Some species are likely to move north towards cooler waters and more suitable habitats. Other forms of aquatic life, including invasive pests and diseases, are likely to arrive or proliferate in the Bay’s newly-warmed waters.123

In terms of health impacts, Maryland is likely to experience increasing numbers of 90-degree days, markedly exacerbating heat-related illnesses and mortality, particularly among the elderly.124 A two-week heat wave in 2012, for instance, led to 12 deaths in Maryland.125 By mid-century, rising temperatures could cause 27 additional deaths each summer in Baltimore alone.126

\textbf{Massachusetts}

Temperatures in Massachusetts have warmed by an average of 1.3 degrees Celsius since 1895, almost twice as much as the rest of the contiguous 48 states. According to recent research

119 MCCC 2015 Annual Report 15, supra.
120 Id.
121 Id.
122 Id. at 15-16.
123 Id. at 16.
124 MCCC 2017 Annual Report 9, 17, supra.
125 MCCC 2016 Annual Report 18-19, supra.
126 Id.
by the University of Massachusetts, the Northeast, including Massachusetts, will continue to see temperatures rise higher more quickly than the rest of the United States and the world.127

Rising temperatures will result in milder winters with more freeze-thaw cycles and less precipitation falling as snow and instead as rain and freezing rain. Hotter summers will increase the number, intensity, and duration of heat waves and lead to poorer air quality.128 Massachusetts already has the nation’s highest incidence of pediatric asthma: among Massachusetts children in kindergarten to eighth grade, more than 12 percent suffer from pediatric asthma, and 12 percent of Massachusetts’s adult population suffers from asthma.129 Warmer temperatures increase ground level ozone, which impairs lung function and can result in increased hospital admissions and emergency room visits for people suffering from asthma, particularly children. Higher temperatures and carbon dioxide levels also will cause plants to produce more pollen, which can exacerbate asthma and other respiratory illnesses. More extreme heat also presents health hazards for people, including increased cardiovascular disease, Type II diabetes, renal disease, nervous disorders, emphysema, epilepsy, cerebrovascular disease, pulmonary conditions, mental health conditions, and death—especially for our most vulnerable residents.

The Northeast has seen the country’s largest increases in heavy precipitation events (more than a 70-percent increase in the heaviest 1 percent of all events since 1958).130 Some areas in Massachusetts have shown an increasing trend in the number of days with two inches of precipitation or more from 1970-2008. For example, over the last 60 years, the Connecticut River basin has experienced more than a doubling of heavy rainfall events. Regionally, the majority of heavy precipitation events have occurred during the summer months of May through September.131 One hundred-year flood events are now occurring every 60 years, and 50-year floods are now occurring approximately every 30 years. Flooding has increased in association with extreme precipitation events, causing costly property damage and putting fish, wildlife, and their habitats at increased risk. Since 1990, Massachusetts has been affected by numerous major weather disasters, including Superstorm Sandy and Tropical Storm Irene.132 Superstorm Sandy, a post-tropical storm in 2012, was the most extreme and destructive event to affect the

\begin{footnotes}

\footnote{129} Id; Centers for Disease Control and Prevention, 2014 Adult Asthma Data: Prevalence Tables and Maps, at https://www.cdc.gov/asthma/brfss/2014/tableC1.htm; Massachusetts Department of Public Health, Pediatric Asthma, at https://matracking.ehs.state.ma.us/Health-Data/Asthma/pediatric.html.

\footnote{130} Horton, \textit{supra}, at 373.

\footnote{132} Runkle et al., \textit{Massachusetts State Summary}, NOAA TECHNICAL REPORT NESDIS 149-MA, 4 (2017), at https://statesummaries.ncics.org/MA.
\end{footnotes}
northeastern United States in 40 years and the second costliest in the Nation’s history. Storm impacts in Massachusetts included strong winds, record storm tide heights, flooding of some coastal areas and loss of power for 385,000 residents.133 Massachusetts suffered an estimated $375 million in property losses alone.134 In January 2018, the storm surge from a powerful winter storm caused major coastal flooding and resulted in a high tide in Boston of 15.16 feet, the highest tide since records began in 1921, even surpassing the infamous Blizzard of 1978.135 And two months later, a March coastal storm resulted in a 14.67 feet Boston tide (the third-highest on record136), damaged 2,113 homes, including 147 that were destroyed, and caused more than $24 million in flooding damage across six Massachusetts coastal counties.137

Beyond the damage that more intense storms can cause homes, businesses, and private and public infrastructure generally, such events also threaten the aging combined sewer and stormwater systems serving many Massachusetts cities such as Boston and Lowell. Heavy precipitation and coastal flooding can overwhelm these systems and release untreated sewage to our rivers and coastal waters, threatening public health and water quality.138

Massachusetts is a coastal state especially vulnerable to sea level rise caused by climate change, which is already exacerbating coastal flooding and erosion from storm events and will eventually inundate low-lying communities, including the City of Boston. Roughly 5 million Massachusetts residents—75% of the state’s population—live near the coast.139 The total output of the Massachusetts coastal economy was $249.2 billion in 2014, representing over 54% of the state’s annual gross domestic product, and coastal counties accounted for 53% of the state’s employment and wages.140 According to the National Climate Assessment, in Boston alone, cumulative damage to buildings, building contents, and associated emergency costs could

\begin{itemize}
 \item 133 Id.
 \item 134 Id.
 \item Christina Prignano, \textit{The Noon High Tide Was Bad, but the Midnight High Tide Could Be Worse}, BOSTON GLOBE, March 2, 2018, at https://www.bostonglobe.com/metro/2018/03/02/the-noon-high-tide-was-bad-but-midnight-high-tide-will-worse/m4O1PR8HRIOlsmx3mp2YvO/story.html.
\end{itemize}
potentially be as high as $94 billion between 2000 and 2100, depending on the sea level rise scenario and which adaptive actions are taken.141

Increased sea level, combined with increased erosion rates, is also predicted to threaten Massachusetts’ barrier beach and dune systems. Development on the beaches themselves, as in the case of Plum Island, will continue to face challenges associated with erosion and storm damage. Barrier beaches will be more susceptible to erosion and overwash, and in some cases breaching. Such breaching will put at risk extensive areas of developed shoreline located behind these barrier spits and islands, such as the shorelines of Plymouth, Duxbury, and Kingston. Engineered structures, such as seawalls designed to stabilize shorelines, could be overtopped. The cost of maintaining and upgrading these engineering structures and replenishing dunes and beaches damaged by erosion will increase as sea levels rise, requiring investments of millions of dollars by local governments.142 Large areas of critical coastal and estuarine habitat, including the North Shore’s Great Marsh—the largest continuous stretch of salt marsh in New England, extending from Cape Ann to New Hampshire—are at risk as they will be unable to adapt and migrate as sea level rises and local land subsides.143

Massachusetts already is seeing what climate change means for our natural resources. The signs of spring—including the arrival of migratory birds and the blooming of wildflowers and other plants—are arriving earlier. Warmer temperatures also are contributing to the rise in

141 Horton, supra, at 379.

143 City of Boston, Climate Ready Boston, supra, at 60.
deer populations in Massachusetts, resulting in loss of underbrush habitat for forest species and the spread of tick-borne diseases such as Lyme disease. As the Gulf of Maine is warming much faster than other water bodies, key cold-water ocean fisheries, including cod and lobster, are in decline. The timing of the migration of anadromous fish species, such as Atlantic salmon and alewives, has advanced in the last few decades, and they are migrating earlier in the season.144

New Jersey

New Jersey’s coastal geomorphology – its sandy beaches, flat coastal plain with a gradually sloping shoreline, low-lying barrier islands, and gradual subsidence – makes the risks of sea level rise from global warming particularly severe in the state. New Jersey’s nearly 1,800 miles of tidally-flowed shoreline, its 239 coastal communities, and its 2 million coastal county residents, are especially vulnerable to flooding, inundation, and erosion from sea level rise and the effects of stronger, fiercer storms.145 New Jersey has been ranked as one of the most threatened states in terms of the value of coastal real estate at risk from sea level rise and chronic flooding in the coming decades.146 Rising sea levels also endanger water supplies as saltwater intrusion of New Jersey’s coastal and lower Delaware River aquifers increases water salinity above drinking standards.147

Sea levels in New Jersey are already rising by an average of 1.6 inches per decade, almost double the global rate.148 USEPA has projected that the global warming will cause sea levels to rise an additional 18 inches to 4 feet in New Jersey by 2100.149 Further sea level rise of

even 12 inches could cause shorelines to recede by as much as 120 feet.150 Barrier islands on the state’s Atlantic Coast from Bay Head to Cape May could be broken up by new inlets or lost to erosion if sea level rises three feet by 2100.151 And up to 3 percent of New Jersey’s land area could be inundated by four-foot sea level rise,152 which would affect countless homes, businesses, hospitals, schools, and critical infrastructure.

These effects of sea level rise are magnified during storm events, which increase the severity of coastal flooding and erosion. For example, in 2012, Superstorm Sandy wreaked havoc in the state when a storm surge reached 9-10 feet above normal in some coastal areas. The extensive damage the State experienced from severe winds and coastal flooding reached an estimated $29.4 billion in repair, response and restoration costs.153 Sandy also cost the state an estimated $11.7 billion in lost gross domestic product, including $950 million in tourism losses.154 Sandy had a catastrophic effect on regional electric and wastewater infrastructure: 73% of the state’s electric customers experienced outages155 and the state’s largest treatment plant was inundated and dumped 240 million gallons of sewage into the Newark Bay.156

Sea level rise and coastal flooding also threaten to obliterate New Jersey’s extensive coastal wetlands. Its tidal marshes are one of the state’s defining features, valuable as a buffer for back-bay communities against erosion and tidal flooding, and as wildlife habitat. The state’s coastal wetlands are an important stopover point for about 1.5 million migratory birds, including rare and endangered species like the red knot, and the Delaware Bay’s tidal shores are the breeding grounds for the world’s largest population of horseshoe crabs.157

\begin{itemize}
\item 150 Small-Lorenz et al., \textit{Building Ecological Solutions}, supra, n.1, at 16.
\item 151 USEPA, \textit{What Climate Change Means for New Jersey}, supra, n.5, at 1.
\item 152 Small-Lorenz et al., \textit{Building Ecological Solutions}, supra, n.5, at 1.
\item 153 NOAA, \textit{New Jersey Climate Summary}, supra, n.1, at 12.
\item 157 NJ Climate Adaptation Alliance, \textit{Summary of Climate Change Impacts and Preparedness Opportunities Affecting Natural Resources} (March 2014), at 1, available at
\end{itemize}
With more frequent and intense storms and accelerated sea level rise, tidal flats and marshes could become open water, jeopardizing species that entirely depend on this ecosystem to feed and nest. In Barnegat Bay and Little Egg Harbor, the rising sea is already eroding and submerging small marsh islands, which are important nesting areas for many seabirds. USEPA found that the salt marshes all along the Atlantic Coast between Cape May and the Meadowlands could be entirely displaced by sea level rise of three feet. Coastal wetlands along Delaware Bay in Cumberland County are more vulnerable still and could be lost if the sea rises by only two feet.158

\textbf{New York}

New York has begun to experience adverse effects from climate change. In 2014, the New York Attorney General’s Office released a report, \textit{Current and Future Trends in Extreme Rainfall Across New York State}, which highlights dramatic increases in the frequency and intensity of extreme rain storms across New York.159 As but one example, devastating rainfall from Hurricane Irene in 2011 dropped more than 11 inches of rain in just 24 hours, causing catastrophic flooding in the Hudson Valley, eastern Adirondacks, Catskills and Champlain Valley. Thirty-one counties were declared disaster areas. Over 1 million people were left without power, more than 33,000 had to seek disaster assistance, and 10 were killed. Damage estimates totaled $1.3 billion. While no individual storm can be tied to climate change, the trends in extreme rainfall already being felt across New York State are consistent with scientists’ predictions of new weather patterns attributable to climate change.

\begin{itemize}
\item 158 USEPA, \textit{What Climate Change Means for New Jersey}, supra, n.5, at 2.
\end{itemize}
Similarly, in August 2014, a weather front stalled over Long Island, dumping more than 13½ inches of rain—nearly an entire summer’s worth—in a matter of hours and breaking the state’s rainfall record. That deluge flooded out over 1,000 homes and businesses, opened massive sinkholes on area roadways, and forced hundreds to evacuate to safer ground. Initial damage estimates exceeded $30 million.
Historic Long Island Flash Flooding

Image from NYTimes (Andrew Theodorakis/Getty Images)

Also, New York’s rate of sea level rise is much higher than the national average and could account for up to 6 feet of additional rise by 2100 if greenhouse gas emissions are not abated. Storm surge on top of high tide on top of sea level rise is a recipe for disaster for coastal New York. The approximately 12 inches of sea level rise New York City has experienced since 1900 may have expanded Hurricane Sandy’s flood area by about 25 square miles, flooding the homes of an additional 80,000 people in the New York City area alone. That flooding devastated areas of New York City, including the Brooklyn-Queens Waterfront, the East and South Shores of Staten Island, South Queens, Southern Manhattan, and Southern Brooklyn, which in some areas lost power and other critical services for extended periods of time.

Hurricane Sandy exposed critical weaknesses in the resilience of New York’s utility infrastructure, the danger that this weakness poses to New Yorkers, and the collateral damage to the economy:

- Almost 2 million utility customers suffered from electricity outages;
- Tens of thousands of utility customers were left without power for weeks;
- Hospitals were shut down and patients displaced;
- Many drinking water utilities lost power, which disrupted their ability to provide safe water; and sewage treatment plants could not operate, resulting in billions of gallons of untreated or partially treated sewage flowing into local waterways.

The costs of Hurricane Sandy to New York alone will likely top $40 billion, including $32.8 billion to repair and restore damaged housing, parks and infrastructure and to cover economic losses and other expenses. That figure includes $9.1 billion to help mitigate and prevent potential damages from future severe weather events.

Of course, sea level rise will not stop in 2100, nor in 2200 especially if a high GHG emission scenario continues, resulting in locked-in or “committed” sea level rise over hundreds or thousands of years, drastically altering New York’s coastline and disrupting our

communities.163 The figure below164 illustrates the inundation in portions of New York City resulting from the committed sea level rise expected from 4°C (7.2°F) of warming.165 Note that in the ongoing rulemaking for the Safe Vehicles Rule, the National Highway Traffic Safety Administration has determined that taking no policy actions to reduce CO2 emissions will cause global surface temperature in 2100 to increase to 3.48°C166, close to the 4°C warming represented in the figure.

Although New York has taken a number of actions to reduce pollutants such as nitrogen oxides and volatile organic compounds that contribute to ground level ozone (smog) formation, ozone pollution remains a persistent problem. Much of New York City and Long Island have not attained the 2008 ozone standards, much less the more protective 2015 standards. A significant amount of the pollutants that contribute to smog is generated in upwind states and carried by prevailing winds into New York and other northeastern states. As the climate warms, increased temperatures create more favorable conditions for the formation of smog. According to the Third National Assessment on Climate Change, for example, under a scenario in which greenhouse

\begin{itemize}
 \item U.S. Global Change Research Program, 2014 National Climate Assessment, at 345.
\end{itemize}
gases continue to increase, this would lead to higher ozone concentrations in the New York metropolitan region, driving up the number of ozone-related emergency room visits for asthma in the area by 7.3 percent--more than 50 additional ozone-related emergency room visits per year in the 2020s, compared to the 1990s.167 The figure below, included in that report, shows that projected worsening in asthma cases in the New York City area.

![Climate Change Projected to Worsen Asthma](image)

Oregon

Oregon is already experiencing adverse impacts of climate change and these impacts are expected to become more pronounced in the future, significantly affecting Oregon's economy and environment:

Loss of Snowpack and Drought

The seasonal flow cycles of rivers and streams are changing due to warmer winters and decreased mountain snowpack accumulation, as more precipitation falls as rain, not snow.168

The Third Oregon Climate Assessment Report169 explained that events in 2015 demonstrated the kind of impacts this is has already had, and will have in the future:

In 2015, Oregon was the warmest it has ever been since record keeping began in 1895 (NOAA, 2017). Precipitation during the winter of that year was near normal, but winter temperatures that were 5–6°F above average caused the precipitation that did fall to fall as rain instead of snow, reducing mountain snowpack accumulation (Mote et al., 2016). This resulted in record low snowpack across the state, earning official drought declarations for 25 of Oregon’s 36 counties. Drought impacts across Oregon were widespread and diverse:

Farmers in eastern Oregon’s Treasure Valley received a third of their normal irrigation water because the Owyhee reservoir received inadequate supply for the third year in a row (Stevenson, 2016) …

People near the Upper Klamath Lake were warned not to touch the water as algal blooms that thrived in the low flows and warm waters produced extremely high toxin levels (Marris, 2015) …

More than half of the spring spawning salmon in the Columbia River perished, likely due to a disease that thrived in the unusually warm waters (Fears, 2015) …

The West Coast–wide drought developed alongside a naturally-driven large, persistent high-pressure ridge (Wise, 2016). However, anthropogenic warming exacerbated the drought, particularly in Oregon and Washington (Mote et al., 2016; Williams et al., 2015) …

Oregon’s temperatures, precipitation, and snowpack in 2015 are illustrative of conditions that, according to climate model projections, may be considered “normal” by mid-century.170

And there has been more bad news since 2015. In 2018, researcher John Abatzoglou reported that:

Drought impacts are being felt most notably in Oregon, which endured a period of substandard snowpack followed by unusually dry and warm conditions since May. The impacts cover the gamut from fire to farms to fish …

169 The Third Oregon Climate Assessment Report, Oregon Climate Change Research Institute, January 2017.

170 Id. at 12-13, citing: P. W. Mote et al., Perspectives on the causes of exceptionally low 2015 snowpack in the western United States.(2016); D. Fears, As salmon vanish in the dry Pacific Northwest, so does Native heritage, Washington Post (2015); J. Stevenson, Documenting the Drought, The Climate CIRCulator (2016); E. Marris, In the Dry West, Waiting for Congress, The Klamath Tribes Tribal News and Events (2015); A.P. Williams et al., Contribution of anthropogenic warming to California drought during 2012-14, Geophysical Research Letter, 2015.
Fishing restrictions have been enacted in the Umpqua River in western Oregon due to critically warm stream temperatures for steelhead and salmon. The combination of very low flows—including recent daily record low flows—due to subpar precipitation and warm temperatures have allowed water temperatures to warm faster than usual.171

Sea Level Rise

Ocean sea levels will rise between four inches and four-and-a-half feet on the Oregon coast by the year 2100, and coastal residents, cities and towns along Oregon’s 300 miles of coastline and 1400 miles of tidal shoreline will be threatened by increased flooding and erosion as a result. Residential development, state highways, and municipal infrastructure are all at risk to such threats.172

Ocean Acidification and Hypoxia

As a result of climate change, ocean waters are now more acidified, hypoxic (low oxygen), and warmer, and such impacts are projected to increase, with a particular detrimental impact on some marine organisms like oysters and other shellfish, which will threaten marine ecosystems, fisheries and seafood businesses that play a vital role in Oregon’s economy and culture.173 As the Third Oregon Climate Assessment Report observed, “[T]he West Coast has already reached a threshold and negative impacts are already evident, such as dissolved shells in pteropod populations … and impaired oyster hatchery operations …”174

The Oregon Coordinating Council on Ocean Acidification and Hypoxia recently reported that “[n]ew research points to an ever-growing list of marine organisms that are now known to be vulnerable to the threats of ocean acidification and hypoxia (OAH). The list includes species such as Dungeness crabs, rockfishes and salmon that underpin livelihoods and connections to the sea for many Oregonians.”175

In March of 2017, KVAL TV in Eugene, Oregon chronicled the experience of the Whiskey Creek Hatchery off Netarts Bay in Tillamook, Oregon. Manager Alan Barton said that

171 Abatzoglou, “Drought Returns to the Pacific Northwest,” OCCRI Climate Circulator (August 2018).

172 See W. Spencer Reeder et al., *Coasts: Complex Changes Affecting the Northwest’s Diverse Shorelines, in Climate Change in the Northwest: Implications for Our Landscapes, Waters, and Communities* 67–109 (Meghan M. Dalton et al. eds., 2013); Ben Strauss et al., Climate Cent., *California, Oregon, Washington and the Surging Sea: A Vulnerability Assessment with Projections for Sea Level Rise and Coastal Flood Risk* 29 (2014).

174 *Third Oregon Climate Assessment Report, supra*, at 36.

175 Oregon Coordinating Council on Ocean Acidification and Hypoxia, 1st Biennial Report, at 8, September 15, 2018.
“[w]e probably produce about a third of all oyster larvae on the West Coast.” But in 2007 and 2008, hatchery output collapsed by 75%. Working with scientists from Oregon State University, Whiskey Creek identified ocean acidification as the problem. They developed a way to treat the water at the hatchery, which has been successful. But Barton does not believe that treatment is a long-term solution:

“The short term prospects are pretty good. But within the next couple of decades we’re going to cross a line I don’t think we’re going to be able to come back from,” he says. “A lot of people have the luxury of being skeptics about climate change and ocean acidification. But we don’t have that choice. If we don’t change the chemistry of the water going into our tanks, we’ll be out of business. It’s that simple for us.”

Forests, Pests and Fires

Oregon is largely defined by its iconic forests, which climate change threatens in a myriad of ways, as the Third Oregon Climate Assessment Report detailed:

Future warming and changes in precipitation may considerably alter the spatial distribution of suitable climate for many important tree species and vegetation types in Oregon by the end of the 21st century. Changing climatic suitability and forest disturbances from wildfires, insects, diseases, and drought will drive changes to the forest landscape in the future. Conifer forests west of the Cascade Range may shift to mixed forests and subalpine forests would likely contract. Human-caused increases in greenhouse gases are partially responsible for recent increases in wildfire activity. Mountain pine beetle, western spruce budworm, and Swiss needle cast remain major disturbance agents in Oregon’s forests and are expected to expand under climate change. More frequent drought conditions projected for the future will likely increase forest susceptibility to other disturbance agents such as wildfires and insect outbreaks.

Future warming and changes in precipitation may considerably alter the spatial distribution of suitable climate for many important tree species and vegetation types in Oregon by the end of the 21st century (Littell et al., 2013). Furthermore, the cumulative effects of changes due to wildfire, insect infestation, tree diseases, and the interactions between them, will likely dominate changes in forest landscapes over the coming decades (Littell et al., 2013).

Over the last several decades, warmer and drier conditions during the summer months have contributed to an increase in fuel aridity and enabled more frequent large fires, an increase in the total area burned, and a longer fire season across the western United States, particularly in forested ecosystems (Dennison et al., 2014; Jolly et al., 2015; Westerling, 2016; Williams and Abatzoglou, 2016). The lengthening of the fire season is largely due to declining mountain snowpack and earlier spring snowmelt (Westerling, 2016). In the Pacific Northwest, the fire season length increased over each of the last four decades.

176 KVAl-TV, ‘One morning we came in and everything was dead’: Climate Change and Oregon oysters, March 1, 2017.
decades, from 23 days in the 1970s, to 43 days in the 1980s, 84 days in the 1990s, and 116 days in the 2000s (Westerling, 2016). Recent wildfire activity in forested ecosystems is partially attributed to human-caused climate change: during the period 1984–2015, about half of the observed increase in fuel aridity and 4.2 million hectares (or more than 16,000 square miles) of burned area in the western United States were due to human-caused climate change (Abatzoglou and Williams, 2016).177

Health Effects

An increase in forest fire activity is one of the various ways in which climate change threatens human health. As the Third Oregon Climate Assessment noted, “Climate change threatens the health of Oregonians. More frequent heat waves are expected to increase heat-related illnesses and death. More frequent wildfires and poor air quality are expected to increase respiratory illnesses.”178 For example:

Climate change is expected to worsen outdoor air quality. Warmer temperatures may increase ground level ozone pollution, more wildfires may increase smoke and particulate matter, and longer, more potent pollen seasons may increase aeroallergens (Fann et al., 2016). Such poor air quality is expected to exacerbate allergy and asthma conditions and increase respiratory and cardiovascular illnesses and death (Fann et al., 2016).179

Oregon has already experienced a dramatic increase in “unhealthy air days” due to forest fires. The Medford metro region experienced 20 air quality alert days due to fire from 1985 through 2001, 19 of those in one year. From 2002 through 2012, Medford had 22 such days. But since 2013, Medford has had 74 such days, including 20 in 2017 and 35 in 2018.180 Portland,

178 Third Oregon Climate Assessment Report, supra, at 74.

180 In addition to the impact on human health, fires in the Medford area have punished a beloved Oregon institution, the Oregon Shakespeare Festival in Ashland. In 2018 alone, the Festival had to cancel – or move indoors, to smaller venues – 20 performances, costing the Festival money and ruining many theater-goers’ plans. *Wildfire Smoke Disrupts Oregon Shakespeare Festival*, New York Times, August 24, 2018.
meanwhile, had a total of two such days from 1985 through 2014 – but 13 such days from 2015 through 2018.181

During the 2017 Eagle Creek fire, the Oregon Health Authority (OHA) reported a 29% increase in emergency room visits for respiratory symptoms in the Portland metro region.182

In its 2014 Oregon Climate and Health Profile Report, OHA elaborated on the health effects of wildfire smoke:

Particulate matter (PM) in smoke from wildfires is associated with cancer, cardiopulmonary disease and respiratory illness … As a result of projected increases in wildfire, Spracklen et al. (2009) anticipate an increase in aerosol organic carbon of up to 40% and an increase in elemental carbon in the western U.S. of up to 20% in 2046–2055 compared to 1996–2005 … PM associated with wildfires in California has been shown to be more toxic to the lungs than normal ambient PM … PM exposure from wildfire smoke is a risk beyond the immediate area of the fire, since high winds can carry the PM long distances … Increases in smoke are associated with hospital admissions for respiratory complaints, and long-term exposure worsens existing cardiopulmonary disease … bronchitis and pneumonia.183

Impact on American Indian Tribes

As the Legislative Summary of the Third Oregon Climate Assessment Report observed:

Changes in terrestrial and aquatic ecosystems will affect resources and habitats that are important for the sovereignty, culture, economy, and community health of many

181 Oregon DEQ, Forest Fire Smoke Impact on Air Quality Health Trends in Bend, Klamath Falls, Medford, and Portland (1985 to 2018), DEQ18-NWR-0066-TR (October 2018). It is worth noting that although air quality alerts are often limited to especially vulnerable populations – “unhealthy for sensitive groups” – Medford in 2017-18 has experienced 38 days in which the air was unhealthy for all populations, including five “very unhealthy” days and one “hazardous” day.

182 Statewide Fire Activation Surveillance Report (090517-090617), Oregon Health Authority.

American Indian tribes. Tribes that depend upon these ecosystems, both on and off reservation, are among the first to experience the impacts of climate change. Of particular concern are changes in the availability and timing of traditional foods such as salmon, shellfish, and berries, and other plant and animal species important to tribes’ traditional way of life.

The threat that climate change poses to salmon populations is a particular source of concern for the tribes:

A 2015 study of Columbia River Basin tribes, including the Confederated Tribes of Warm Springs (CTWS) and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR), found that the primary concerns regarding climate change impacts included the quantity and quality of water resources, snowpack, water temperatures for spawning conditions, and fishing rights (Sampson, 2015). Pacific salmon have great cultural, subsistence, and commercial value to tribes in the Pacific Northwest, and are central to tribal cultural identity, longhouse religious services, sense of place, livelihood, and the transfer of traditional values to the next generation (Dittmer, 2013). During the last 150 years, culturally important salmon populations have declined (Dittmer, 2013). Continuation of past trends of earlier spring peak, more extreme high flows and more frequent low flows in the low elevation basins of northeast Oregon, home to the CTWS and CTUIR, may force earlier migration of juvenile salmon, challenge returning adults in low flow conditions, and increase scour risk for emerging young salmon (Dittmer, 2013).

The threat that climate change poses to forests is likewise a major concern for tribes:

Changes in forest ecosystems and disturbances will affect resources and habitats that are important for the cultural, medicinal, economic, and community health of tribes (Lynn et al., 2013). In Oregon, 62% of tribal reservation land is forested, and the US government has a trust responsibility toward such forests (Indian Forest Management Assessment Team, 2013). American Indian and Alaska Native tribes that depend on forest ecosystems, whether on or off reservations, are among the first to experience the impacts that climate change is having on forests, such as the expansion of invasive species, insects, diseases, and wildfires (Norton-Smith et al., 2016). Invasive species that displace native species can negatively affect tribal subsistence and ceremonial practices, although there is little knowledge about on how climate change will interact with invasive species (Norton-Smith et al., 2016). Increasing wildfire, insects, and diseases have jeopardized the economic and ecological sustainability of tribally managed forests and important tribal resources (Indian Forest Management Assessment Team, 2013; Norton-Smith et al., 2016).

184 The Third Oregon Climate Assessment Report, supra, (Legislative Summary).

al., 2016). Collaborative adaptive forest management that integrates tribal traditional ecological knowledge can support socio-ecological resilience to climate change (Armatas et al., 2016).186

Rhode Island

Climate change is adversely impacting Rhode Island in many diverse ways, including warming air temperatures, warming ocean temperatures, rising sea level, increased acidity of ocean waters, increased rainfall amounts, and increased intensity of rainfall events.

Rhode Island has experienced a significant trend over the past 80 years toward a warmer and wetter climate. Trends are evident in annual temperatures, annual precipitation, and the frequency of intense rainfall events. Temperatures have been steadily climbing in the Ocean State since the early 1930s. The average annual temperature for the state is currently increasing at a rate of 1 degree Fahrenheit every 33 years. The frequency of days with high temperatures at or above 90 degrees has increased while the frequency of days with minimum temperatures at or below freezing has decreased.187

There has also been a pronounced increase in precipitation from 1930 to 2013. Increased precipitation has occurred as a result of large, slow moving storm systems, multiple events in the span of a few weeks (such as the 2010 spring floods), as well as an increase in the frequency of intense rain events. The average annual precipitation for Rhode Island is increasing at a rate of more than 1 inch every 10 years. The frequency of days having one inch of rainfall has nearly doubled. Intense rainfall events (heaviest 1 percent of all daily events from 1901 to 2012 in New England) have increased 71 percent since 1958. The increased amounts of precipitation since 1970 has resulted in a much wetter state in terms of soil moisture and the ground’s ability to absorb rainfall.188

188 *Id.* at 4.
In addition, the water in Narragansett Bay is getting warmer. Over the past 50 years, the surface temperature of the Bay has increased 1.4° to 1.6° C (2.5° to 2.9° F). Winter water temperatures in the Bay have increased even more, from 1.6° to 2.0° C (2.9° to 3.6° F). Ocean temperatures are increasing world-wide, but temperature increases in the northwestern Atlantic Ocean are expected to be 2-3 times larger than the global average. Warmer water temperatures in Narragansett Bay are causing many changes in ecosystem dynamics, fish, invertebrates, and plankton. Cold-water iconic fishery species (cod, winter flounder, hake, lobster) are moving north out of RI waters and warm-water southern species are becoming more prevalent (scup, butterfish, squid). Rhode Island’s marine waters are also becoming more acidic due to increasing CO₂. This may cause severe impacts to shellfish, especially in their larval life stages.

Sea levels have risen over 9 inches in Rhode Island since 1930 as measured at the Newport tide gauge. The historic rate of sea level rise at the Newport tide gauge from 1930 to 2015 is presently 2.72 mm/year, or more than an inch per decade. At present rates, sea levels will likely increase 1 inch between every 5 or 6 years in Rhode Island. NOAA is projecting as much as 6.6 feet of sea level rise by the end of this century in Rhode Island. In the shorter-term, NOAA predicts upwards of 1 foot by 2035 and 1.9 feet by 2050. This has critical implications for Rhode Island, as thousands of acres of Rhode Island’s coast will be affected.

Climate change is also altering the ecology and distribution of plants and animals in Rhode Island. In southern New England, spring is arriving sooner and plants are flowering earlier (one week earlier now when compared to the 1850s). For every degree of temperature rise in the spring and winter, plants flower 3.3 days earlier. For woody plants, leaf-out is occurring 18 days earlier now than in the 1850s. Changes in the timing of leaf-out, flowering, and fruiting in plants can be very disruptive to plant pollinators and seed dispersers.

Changes in the timing of annual cycles has been observed in Rhode Island birds. Based on a 45-year near-continuous record of monitoring fall migration times for passerine birds in Kingston, RI, Smith and Paton (2011) found a 3.0 days/decade delay in the departure time of 14 species of migratory birds.

Vermont

Climate change is causing an increase in temperatures and precipitation in Vermont. Average annual temperature has increased by 1.3° F since 1960, and is projected to rise by an

190 Id.

191 Id. at 28-30.

192 Id.

193 Id. at 38-40

194 Id.
additional 2-3.6 ° F by 2050.\(^{195}\) Since 1960, average annual precipitation has increased by 5.9 inches.\(^{196}\)

Heavy rainfall events are becoming more common.\(^{197}\) Increasingly frequent heavy rains threaten to flood communities located in Vermont’s many narrow river valleys. In 2011 Tropical Storm Irene dumped up to 11 inches of rain on Vermont, impacting 225 municipalities and causing $733 million in damage.\(^{198}\) More than 1,500 residences sustained significant damage, temporarily or permanently displacing more than 1400 households.\(^{199}\) More than 500 miles of state highway, 2000 municipal road segments, and 480 bridges were damaged.\(^{200}\) Farms, water supply and wastewater treatment facilities were also damaged, and the channels of many streams were enlarged and/or relocated.\(^{201}\)

In addition to threatening human lives and property, increasingly frequent heavy rains present challenges for state and local land use planning. Further, storm water runoff carries pollutants to the state’s streams and lakes, and hinders the state’s efforts to address phosphorous pollution and resulting algal blooms in Lake Champlain.

Climate change also threatens Vermont’s environment and economy by affecting activities dependent on seasonal climate patterns, such as maple sugaring and winter sports.\(^{202}\) Vermont is the nation’s leading maple-syrup producing state\(^{203}\). Warmer temperatures are likely to shift the suitable habitat for sugar maples farther north into Canada.\(^{204}\) Warmer winters may bring more rain and less snow to Vermont, harming the skiing, snowboarding, and snowmobiling

\(^{196}\) Id.

\(^{197}\) Id.

\(^{200}\) Id.

\(^{201}\) Id.

industries and local economies that depend on them. Id. During the winter of 2016-17, Vermont recorded more than 3.9 million skier visits, second only to Colorado among the states.205

Climate change is also contributing to increased distribution and abundance of ticks and increased tickborne diseases, including Lyme disease and Anaplasmosis, in Vermont.206 Vermont has the nation’s highest per-capita incidence of Lyme Disease.207

Washington

Washington is a coastal state, a mountain state, and a forest state. Reports prepared by the University of Washington Climate Impacts Group show that climate change will significantly adversely affect each of these signature features of Washington. In addition to these impacts, climate change will cause significant harm to public health.

Approximately 4 million of Washington’s 6.5 million people live in the area around Puget Sound. Climate change will cause the sea level to rise and permanently inundate low-lying areas in the Puget Sound region.208 Under a business as usual greenhouse gas scenario, sea level is predicted to rise in Seattle relative to 2000 levels by 2 feet by 2050 and 5 feet by 2100.209 Sea level rise will also increase the frequency of coastal flood events. For example, with 2 feet of sea level rise (predicted for Seattle), a 1-in-100 year flood event will become an annual event. Sea level rise will also cause coastal bluffs (the location of many family homes in Puget Sound) to recede by as much as 75-100 feet by 2100 relative to 2000.210 This would be a doubling, on average, of the current rate of recession. Sea level rise will also result in reduced harvest for commercial fishing and shellfish operations.211

209 State of Knowledge: Climate Change in Puget Sound (November 2015), Climate Impacts Group, University of Washington, (hereinafter “State of Knowledge, Puget Sound”) at 4-7; available at https://cig.uw.edu/resources/special-reports/ps-sok/

210 Id.

211 Id.
Climate change is also causing ocean acidification, through the absorption in the ocean of excess carbon dioxide from the atmosphere. Ocean waters on the outer coast of Washington and the Puget Sound have become about 10-40 percent more acidic since 1800.212 This increased acidity is already affecting some shellfish species.213 Washington has the largest shellfish industry on the west coast, contributing $184 million to Washington’s economy in 2010 and employing 2710 workers.214 Under a business as usual greenhouse gas scenario, ocean waters are expected to become at least 100 percent more acidic by 2100 relative to 1986-2005.215 The predicted level of ocean acidification is expected to cause a 34 percent decline in shellfish survival by 2100.216

Washington depends on yearly winter mountain snow pack for drinking water, as well as water for irrigation, hydropower, and salmon. Washington’s winter mountain snowpack is decreasing because climate change is causing more precipitation to fall as rain rather than snow. Snowpack decreased in Washington’s Cascade Mountains by about 25 percent between the mid-20th century and 2006.217 By the 2040s, snowpack is predicted to decrease 38-46 percent relative to 1916-2006,218 and by the 2080s, snow pack is expected to decline 56-70 percent.219 This loss of snowpack will cause a 50 percent increase in the number of years in which water is not available for irrigation, as well as a 20 percent decrease in summer hydropower production.220 In addition, the decrease in summer stream flows combined with higher stream temperatures will result in stream temperatures too high to support adult salmon.221

Climate change is also impacting Washington’s forests. Of Washington’s total area (42.5 million acres), a little more than half (22 million acres) is forested.222 Washington’s forest products industry generates a gross income of about $48 billion per year, provides more than

\begin{flushleft}
212 State of Knowledge Report, Climate Change Impacts and Adaptation in Washington State: Technical Summaries for Decision Makers, (December 2013), Climate Impacts Group, University of Washington (hereinafter “State of Knowledge Report”), at 2-6; available at https://cig.uw.edu/resources/special-reports/wa-sok/

213 Id at 2-3.

215 State of Knowledge Report at ES-2.

216 Id at 8-4.

217 Id at 2-5

218 Id at ES-2.

219 Id at 6-10.

220 Id at 6-5.

221 Id at ES-4, 6-6, 6-11, 6-12.

\end{flushleft}
100,000 jobs, and contributes approximately $4.9 billion in annual wages.223 Climate change is threatening this industry in a number of ways. For example, Douglas fir accounts for almost half the timber harvested in Washington.224 Under a moderate greenhouse gas scenario, Douglas fir habitat is expected to decline 32 percent by the 2060s relative to 1961-1990.225 In addition, the area of Washington forest where tree growth is severely limited by water availability is projected to increase (relative to 1970-1999) by about 32 percent in the 2020s, with an additional 12 percent increase in the 2040s and another 12 percent increase in the 2080s.226 Wildland fires pose another threat to Washington’s forests. Under a business as usual greenhouse gas scenario, decreases in summer precipitation, increases in summer temperatures and earlier snow melt are predicted to result in up to a 300 percent increase in the area in eastern Washington burned annually by forest fires227 and up to a 1000 percent increase in area burned annually on the west side of the state (typically, the wet side).228

By far the highest costs to the state, however, are expected to come from harm to public health. More frequent heat waves and more frequent and intense flooding may harm human health directly. Warming may also exacerbate health risks from poor air quality and allergens. Climate change can indirectly affect human health through its impacts on water supplies, wildfire risks, and the ways in which diseases are spread. Risks are often greatest for the elderly, children, those with existing chronic health conditions, individuals with greater exposure to outside conditions, and those with limited access to health resources.229

225 State of Knowledge Report, supra, at 7-1.

226 Id at 7-3.

227 Id.

228 Id at 7-4.

229 State of Knowledge, Puget Sound, supra, at ES-7.